Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

D. Gayathri,^a D. Velmurugan,^a* K. Ravikumar,^b D. Saravanakumar^c and M. Kandaswamy^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.002 Å R factor = 0.048 wR factor = 0.150 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved


4-Nitro-2-[(phenylhydrazono)methyl]phenol

The molecular conformation of the title compound, $C_{13}H_{11}N_3O_3$, is stabilized by an intramolecular $O-H\cdots N$ hydrogen bond which generates an S(6) motif. The crystal packing is stabilized by $N-H\cdots O$ and $C-H\cdots O$ intermolecular interactions.

Received 28 March 2007 Accepted 29 March 2007

Comment

In supramolecular chemistry, the development of new receptors for anions has attracted much interest (Evans *et al.*, 2006). A general strategy for the production of a colorimetric sensor for anions is an anion-binding group with a chromogenic unit capable of signalling the binding event through an intramolecular charge-transfer process which leads to a change in colour visible to the naked eye (Suksai & Tuntulani, 2003). Aromatic nitro derivatives containing suitable binding groups have attracted more attention for selective and sensitive colorimetric detection of cations and anions (Kato *et al.*, 2001).

Bond lengths and bond angles in the title compound, (I), are comparable with literature values (Allen *et al.*, 1987). The torsion angles C3–C2–N1–O1 [-2.7 (2)°] and C1–C2–N1–O2 [-3.2 (2)°] indicate that the nitro group is almost coplanar with the benzene ring to which it is attached. The dihedral angle between the two benzene rings is 5.4 (1)°. The molecular conformation is stabilized by a strong O–H···N hydrogen bond, in which atom O3 acts as donor to N2, generating an S(6) motif. The crystal packing is stabilized by N–H···O and C–H···O intermolecular interactions (Table 1).

Experimental

The title compound was synthesized by Schiff base condensation between phenylhydrazine and 5-nitrosalicylaldehyde. Phenylhydrazine (0.5 ml, 4.62 mmol) in methanol (20 ml) was added to a solution of 5-nitrosalicylaldehyde (0.77 g, 4.62 mmol) in methanol (20 ml) with stirring. The solution was stirred for 1 h, and then heated to reflux for 30 min. The resulting solution was evaporated to obtain the product which was recrystallized from acetonitrile. Single crystals suitable for X-ray analysis were obtained by slow evaporation (yield 89%; m.p. 417 K).

Crystal data

 $\begin{array}{l} C_{13}H_{11}N_3O_3\\ M_r = 257.25\\ \text{Monoclinic, } P2_1/c\\ a = 12.8167\ (13) \text{ Å}\\ b = 8.2176\ (8) \text{ Å}\\ c = 12.5848\ (12) \text{ Å}\\ \beta = 113.068\ (2)^\circ \end{array}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: none 13440 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	172 parameters
$wR(F^2) = 0.150$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
2876 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

V = 1219.5 (2) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.24 \times 0.22 \text{ mm}$

2876 independent reflections

2440 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 273 (2) K

 $R_{\rm int} = 0.018$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.00	a (a) (i)	4.47
$C1-H2\cdots O3^{ii}$ 0.93	1.89	2.621 (1)	147
	2.17	2.970 (2)	155
	2.58	3.474 (1)	161

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

All H atoms were positioned geometrically (C-H = 0.93, N-H = 0.86 and O-H = 0.82 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N,O)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

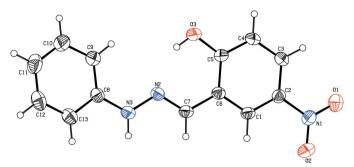


Figure 1 The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

PLATON (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PARST* (Nardelli, 1995).

DG thanks CSIR, India, for the award of a Senior Research Fellowship. DV thanks DST, India, for a major research project. The Department of Science & Technology (DST– FIST) and the University Grants Commission (UGC), Government of India, are acknowledged by DV for providing facilities to the department.

References

- Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2001). *SMART* (Version 5.625/NT/2000) and *SAINT* (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Evans, L. S., Gale, P. A., Light, M. E. & Quesada, R. (2006). Chem. Commun. pp. 965–967.
- Kato, R., Nishizawa, T., Hayashita, T. & Teramae, N. (2001). *Tetrahedron Lett.* 42, 5053–5056.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Suksai, C. & Tuntulani, T. (2003). Chem. Soc. Rev. 32, 192-202.